Zikodrive Motor Controllers - stepper motor drivers, brushless ESCs, bldc motor drivers, stepper motor controllers
Zikodrive Motor Controllers - stepper motor drivers, brushless ESCs, bldc motor drivers, stepper motor controllers

+44 (0) 333 123 7130

Products                               Services                                 Company                                   News                                     Support

Stepper                                  OEM Service                             About Us                                     Latest News                             Support Forum

BLDC                                     Bespoke Design                        Applications                                                                               FAQs

Packages                                Startup Offer                            Recruitment                                                                               

Accessories                             Motion Control Systems             Who we work with

Brushed DC                            Ongoing Tech Support                How we work

                                                                                             Applications

                                                                                             Case Studies


Stepper motor theory: how do stepper motors work and how do different specifications and factors affect their performance?

The absolute basics

A stepper motor is a motor that is designed to take steps rather than simply rotate immediately that power is applied.

As such it is typically used in quite different applications to DC motors (although there are some where there is crossover - CLICK HERE for more information).


A brief history of the stepper motor and its development

The question as to who actually invented the stepper motor is still open to some debate.

For most however it is largely attributed to Frank W. Woods who patented a motor based on 5 stator coils which could be charged in various combinations to deliver step by step movement.

That said, the first recorded example of a stepper motor being used in a practical application was by the British Navy in the 1930s as a means of controlling gun turrets and cannons.

In the 1960s this type of basic stepper motor began to be superseded by large angle permanent magnet stepper motors similar to the types commonly in use today.

These motors suffered with a number of issues.

Positional accuracy was limited due to the absence of accurate controllers and resonance issues within the motor casings would often cause the motor to have to be stopped and restarted.

Throughout the 1970s and especially the 1980s and 1990s major advances were made in developing controllers which could address some of the resonance issues found in stepper motors, as well as manufacturing developments which reduced the cost of stepper motors. However, stepper motors at this time remained expensive and were typically used in defence and aerospace applications.

By the early 2000s these developments were so significant that the cost of stepper motors and related controllers began to fall, enabling them to be used in a range of applications where they were previously too expensive to use.


Why is taking steps useful for a motor?

By being able to take specific steps it is possible to accurately control the rotation of the motor down to percentages of a degree with incredible accuracy.

If you imagine a clock face with one hand, a ‘traditional’ DC motor would only be able to rotate at a consistent speed.

Any positioning would have to be controlled by time or by using a closed loop system with an encoder to determine position. However, with a stepper motor it is possible to quickly and simply move the hand from any position on the clock to any other position at whatever speed is required.

Depending on the stepper motor controller that you are using it is possible to manage the acceleration and deceleration of each movement and even programme specific sequences.


Ok, I understand the basic principles and idea but how do stepper motors actually work?

The first thing to understand is the internal design of the stepper motor. The stepper motor is a type of brushless motor (only in the sense that it has no brushes) and it has the magnet directly attached to the shaft at the centre of the motor.

What makes this different from other motors is that the magnet has teeth around it, rather like the teeth on a cog. In fact it has 2 sets of teeth around the rotor which are offset and which have the north and south poles alternating.

The actual coils (which are powered on and off by the stepper motor controller) are mounted on the outside of the motor.


How a stepper motor turns…

A typical stepper motor will have 2 sets of coils arranged opposite each other (180 degrees apart).

In order to get the motor to turn the coils are turned on, with one positive and the other negative. This creates a dual push/pull effect in the stepper motor which will move it around one step.

After one step is complete, the other pair do the same thing and the motor turns another step.

As this process is sped up by the stepper motor controller being used, the motor will start to turn more fluently (rather than a step, step, step, step process) and can reach speeds of up to 1000 rpm (for more on stepper motor speeds and what affects them CLICK HERE).

This process is then repeated through the four stages:


1. Coil 1 positive, coil 3 negative = 1 step

2. Coil 2 positive, coil 4 negative = 1 step

3. Coil 1 negative, coil 3 positive = 1 step

4. Coil 2 negative, coil 3 positive = 1 step


Depending on the type of controller that you have it is possible to include microstepping (for more on this please CLICK HERE - but for this discussion we are going to stick with full step operation in order to clearly understand how the stepper motor works.


The best possible type of motor for applications such as dosing where positional control is essential

A typical stepper motor such as the NEMA 23 stepper motor in the ZD4N2318 actually has 200 possible steps in one complete 360 degree rotation. This is the most common stepper motor configuration, but there are other types which have more (for example the ZDSPN1709 has 400 steps).

With the standard 200 step stepper motor we therefore have 1.8 degrees per step (assuming we are operating in full step mode).

If you consider that a stepper motor controller such as the Zikodrive ZD2 can operate at up to 128 microstep resolution (meaning it has 128 individual ‘microsteps’ in 1 full step) then it is clear that a stepper motor can deliver exceptionally accurate positional accuracy.

This makes it hugely useful in applications such as pump applications or process control applications where highly accurate positioning can make the difference.

Zikodrive sell a significant percentage of our annual sales of stepper motor controllers into pump and process control applications.

For more information on typical stepper motor applications you can CLICK HERE or you can browse pumps and process control applications by CLICKING HERE. We also have several case studies involving stepper motor controllers which may be of interest to you. If so, please CLICK HERE.


The importance of the stepper motor controller in dictating the actual motor performance

As you can no doubt imagine from the description above, one of the most important factors in shaping stepper motor performance is the stepper motor controller which is used.

Quite simply, without a controller, a stepper motor will not be able to offer you anything in the way of mechanical performance apart from a locked shaft.

A very simple stepper motor driver will be able to turn a stepper motor but will not provide a major range of control and performance options which will help you really benefit from the performance features that a stepper motor can offer.

However, an advanced microstepping programmable controller such as the Zikodrive ZD4 will provide a comprehensive range of performance from the stepper motor of your choice. This type of controller can offer highly accurate positioning and can be set up to deliver the performance you need with a range of additional safety features such as over current protection, reverse polarity protection and more.

All of this can have a major bearing on the way in which the motor will perform, the life of the motor and controller and the efficiency of the entire system.

For more on matching motors and controllers please CLICK HERE.


I want to know more, what can I do?

Depending on the specific aspect that you are wanting to know more about we may well have an article that can help. Some closely related articles are as follows:

1. Matching controllers to motors

2. Choosing the right motor for your application

3. Understanding microstepping and how it can impact on performance

4. What are the main advantages of using stepper motors

5. Understanding NEMA sizes used for stepper motors


I understand the fundamentals but I am still not sure what is the best way to set up a stepper motor for my project….

If you understand the basic principles outlined above and know that this is the right type of motor for your application you can start by browsing our range of stock stepper motor packages (CLICK HERE).

These will give you a good idea of the type of features available with our range and also the power and speed ratings you may be able to achieve.

If you have any additional questions on top of this you can always CONTACT US to discuss it.

We try and maintain the online chat facility between 9 and 5 GMT (although we are not always able to do so if we are all busy) but if not you can always send us an email or give us a call to discuss your project and what is required to make it a success.

Browse our stock range of Stepper Motor ControllersThe ZD6Pump Applications

The ZD Series of Stepper Motor Controllers offer a broad range of microstepping options up to 1/128 microstepping. Depending on your application we can preset your controller to run on whatever type of microsteping you require.

Microstepping ZD DriversContact us TodayDownload ZD10 Datasheets

Frequently Asked Questions

Can I replace a DC motor with a brushless DC motor and controller?

How fast can a stepper motor go?

How complex can the programming on the Zikodrive stock range of motor controllers be?

Can sensorless brushless motor controllers be used in dosing applications?

Can a sensorless brushless motor be started efficiently under load?

Can I purchase the IP rights to a bespoke designed controller?

Do you offer on site support and assistance setting up a new controller?

What are the typical costs associated with modifying an existing stock stepper motor controller or brushless motor driver?

Can I run a motor at a fixed speed under a variable or changing load?


Contact Zikodrive Motor Controllers to discuss your brushless ESC, stepper motor driver, bldc motor driver or stepper motor controller

+44 (0) 333 123 7130

Read more FAQsContact Us 

The ZDSPN1709 is a NEMA 17 stepper motor with 400 steps. Featuring a ZDSP integrated controller , the ZDSPN1709 is a compact but flexible stepper motor suitable for a range of applications.

Stepper MotorsZDSPN1709

The ZD10N2315GB is a powerful geared NEMA 23 stepper motor with a gearbox ratio of 15:1. In combination with the microstep resolution of the ZD10 controller this delivers a staggering level of positional accuracy.

The ZD10 ControllerContact us TodayZD10N2315GB

The ZD4N2318 is a compact NEMA 23 stepper motor with an integrated ZD4 controller. This delivers up to 1.36nm of torque from a 4A controller. If you require something different why not browse our range of packages or get in touch to talk to an engineer today.

Stepper Motor PackagesContact us TodayThe ZD4N2318