Zikodrive Motor Controllers - stepper motor drivers, brushless ESCs, bldc motor drivers, stepper motor controllers
Zikodrive Motor Controllers - stepper motor drivers, brushless ESCs, bldc motor drivers, stepper motor controllers

+44 (0) 333 123 7130

Can a motor (and controller) maintain a fixed speed under variable load with stepper or brushless motors?

Quite simply, yes.

There are several ways to do this.

Using an Encoder, a pot or Hall Effect Sensors

By using an encoder or pot on the back of a motor it is possible to actively monitor the exact speed of the motor and adjust it at any time to the speed required. This is called a closed loop system. An incremental encoder works by pulsing as the shaft turns and then sending these signals back to controller. This enables the controller to read the speed of the pulses and therefore accurately calculate the speed. An absolute encoder or pot works in a similar way but uses the variable resistance of the pot or the electromechanical construction of the encoder to enable the controller to calculate the absolute position of the shaft.

Hall effect sensors are largely used in brushless DC motors as a method for sensing the position of the shaft within the motor itself. These sensors are (perhaps rather predictably!) only found in sensored brushless DC motors and not in sensorless brushless DC motors. Bear in mind that sensored brushless DC motors can be driven by sensorless brushless DC motor controllers but that sensorless brushless DC motors cannot be driven by sensored brushless DC controllers…

All of these methods can be used to accurately judge the exact speed of the motor shaft and therefore make adjustments and can be used in both brushless motors or stepper motors (or indeed brushed DC motors). In all of these cases a change in the actual speed of the motor which was caused by an increase or decrease in load would be instantly picked up by an intelligent controller such as the ZD10 Stepper Motor Driver or the ZDBL15 Sensorless Brushless DC Motor Controller and the ZD10 or ZDDC could then be programmed to increase or decrease the power going into the motor to correct the speed.

Please note that in such systems safety features can become very important as there is obviously a cut off point at which the stepper motor controller or BLDC motor driver will not be able to deliver the power required to turn the motor if too much load is applied (ie the top power rating of the controller and/or motor). By having maximum current settings and other protective measures it is possible to protect the motor and controller by simply stalling the system and highlighting the error accordingly.

Using Sensorless Brushless Motor Controllers that measure Back EMF

Speed monitoring and constant speed can also be achieved without encoders and similar devices by using a brushless motor driver (brushless ESC) such as the ZDBL10 which can measure the back EMF from a brushless motor and therefore determine the speed of the motor and make adjustments accordingly. Back EMF stands for Back Electro Motive Force and is a force generated by the action of the brushless motor turning. Because Back EMF frequency is directly related to the speed of the motor (it is similar to the way in which power is generated using a wind turbine for example) this frequency can be read by the BLDC motor driver and the speed of the motor calculated accordingly. It should be noted that this is generally a much lower cost option than using encoders and similar devices.


The nature of your application and the budget that you are working to will ultimately determine the most appropriate way to set your system up but the key thing to note is that there are several ways in which constant speed under variable load can quickly be achieved. Of these, using a sensorless brushless motor controller such as the ZDBL15 is probably the lowest cost and simplest but if you require a greater level of accuracy then it may well be the case that using an encoder or pot would be more beneficial.

Return to FAQsTech Support ForumZDBL15 - Sensorless Brushless Motor Controller or BLDC Motor Driver

The ZDBL Series of Brushless ESCs can be set up to run at a constant speed without using any additional components. They do this by using the back-EMF of the brushless motor to measure the speed and adjust accordingly.

Brushless ESCsZDBL15

Products                               Services                                 Company                                   News                                     Support

Stepper                                  OEM Service                             About Us                                     Latest News                             Support Forum

BLDC                                     Bespoke Design                        Applications                                                                               FAQs

Packages                                Startup Offer                            Recruitment                                                                               

Accessories                             Motion Control Systems             Who we work with

Brushed DC                            Ongoing Tech Support                How we work


                                                                                             Case Studies

Frequently Asked Questions

Can I replace a DC motor with a brushless DC motor and controller?

How fast can a stepper motor go?

How complex can the programming on the Zikodrive stock range of motor controllers be?

Can sensorless brushless motor controllers be used in dosing applications?

Can a sensorless brushless motor be started efficiently under load?

Can I purchase the IP rights to a bespoke designed controller?

Do you offer on site support and assistance setting up a new controller?

What are the typical costs associated with modifying an existing stock stepper motor controller or brushless motor driver?

Can I run a motor at a fixed speed under a variable or changing load?